
Energy Saving Ideas in Refrigeration

2019 Columbus ASHRAE

Presenter Michael Frantz C.E.M. Lockheed Martin Field Engineer

Electrical Usage in Commercial Buildings

Grocery Profits

Where does the money go?

- ■\$1.00 sales
- ►\$0.75 cost of goods
- ■\$0.21 operating expenses
- ►\$0.02 other expenses
- ■\$0.02 earnings
- Split for dividends and growth

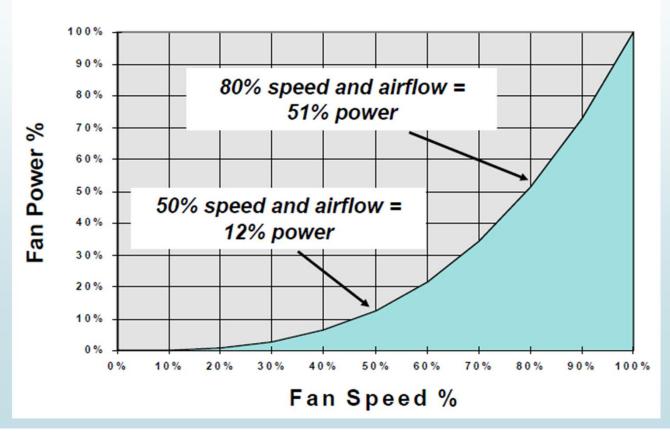
Building

Commissioning pays!

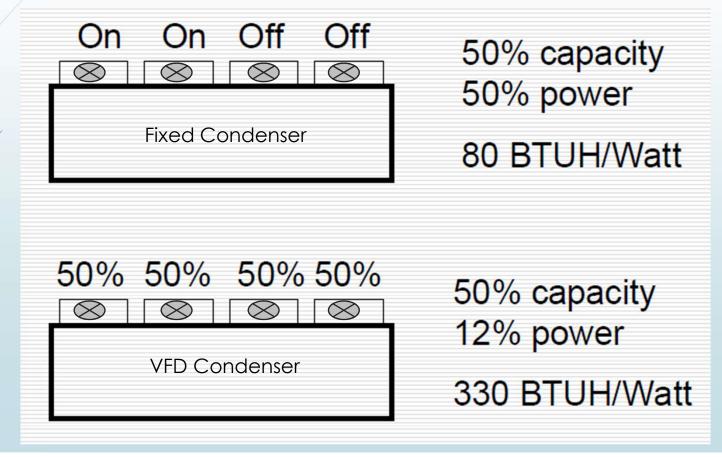
Retro-commissioning results in average annual energy cost savings \$0.15 per sf.

6.1 times the annual energy production of the Hoover Dam

ROI for an investment in retro-commissioning is 115%

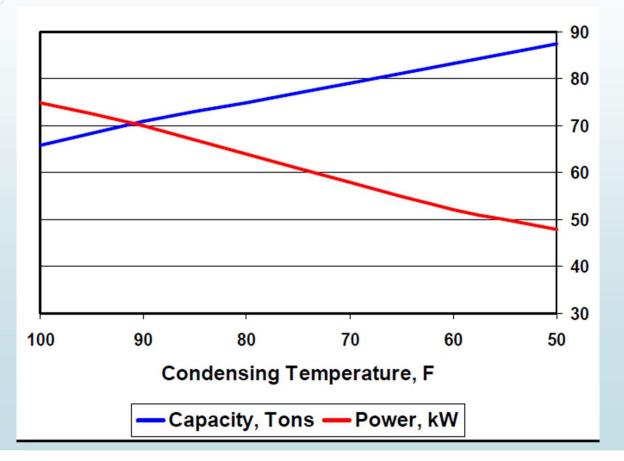


*NSF/IUCRC Center for Building performance and Diagnostics at Carnegie Mellon University

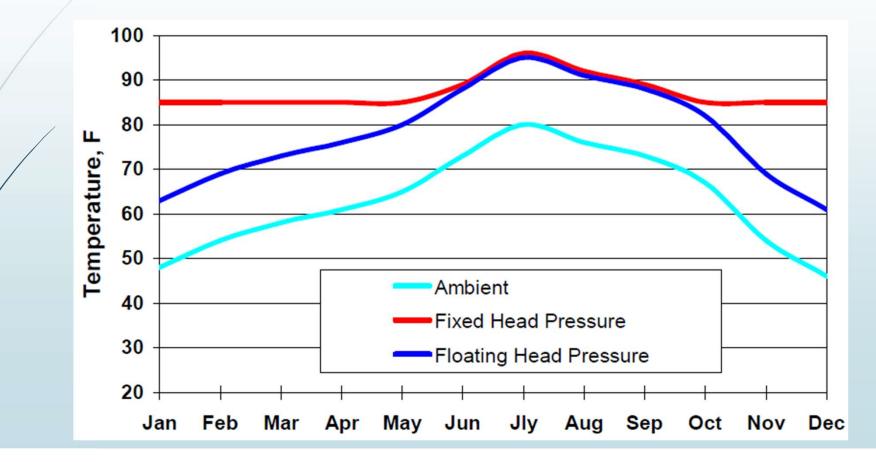

Variable Speed Fan Control

Third power relationship "Affinity law"

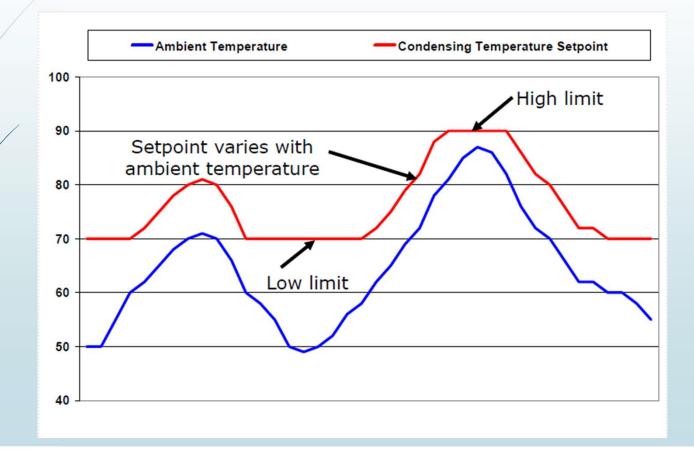
- Airflow varies directly with change in speed
- Air pressure varies with the square of change in speed
- Fan power varies with the cube of change in speed



Third power relationship "Affinity law"



Floating Head Pressure


Impact on capacity and power

Fixed vs. Floating Head Pressure Floating cond. temp. according to OAT

Floating Head Pressure Variable setpoint control

Floating Head Pressure (FHP) Energy saving potential

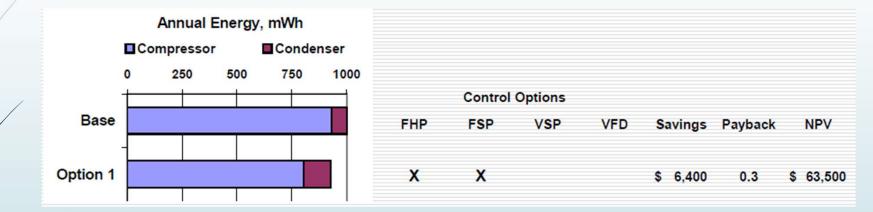
- Lower head pressure
- Lower fan power
 - Variable speed
 - Floating setpoint

Optimum system balance

Minimum compressor and fan power

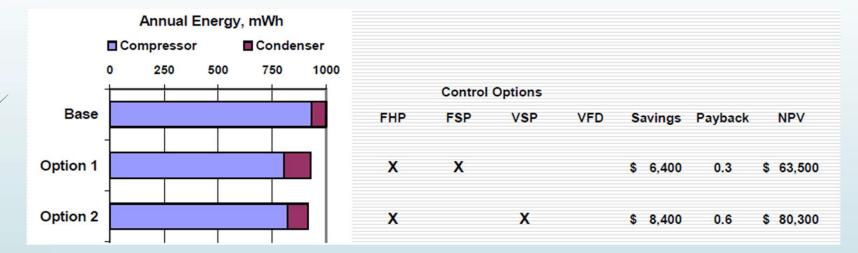
Savings with optimum FHP

12 – 20% Annual compressor/condenser savings

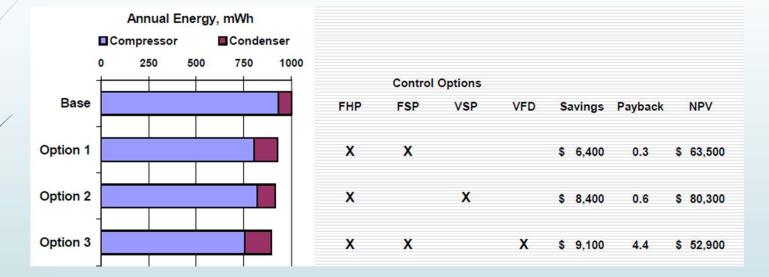


FHP Case Study

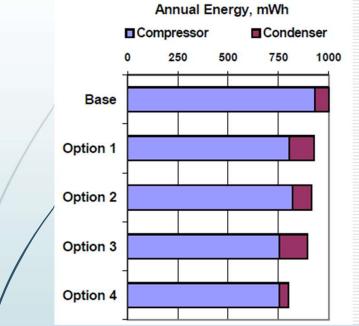
- Cold storage warehouse, in Stockton, California
- Evaporative condenser, average efficiency
- Hourly analysis
- Fixed setpoint at 85°
- Analysis options
 - Fixed setpoint
 - Variable setpoint
 - Variable speed
 - Variable speed with variable setpoint



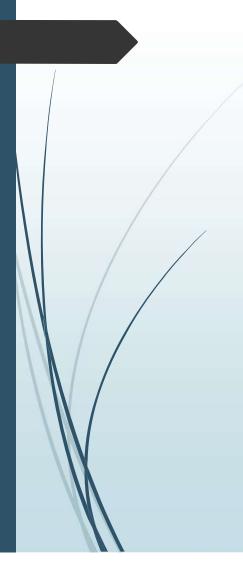
Results – Fixed Setpoint


- FHP Fixed head pressure
- FSP Fixed setpoint, float 85° saturated cond. temp.
- VSP Variable setpoint, float setpoint, ambient
- VFD Variable frequency drive

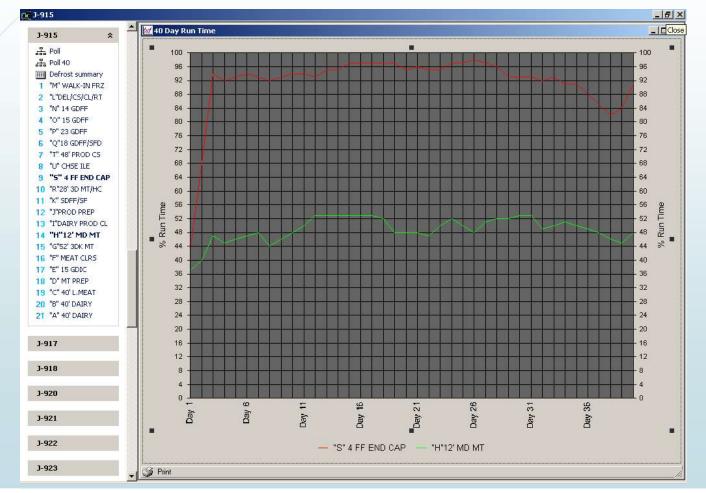
Results – Variable Setpoint


- FHP Fixed head pressure FSP – Fixed setpoint VSP – Variable setpoint
- VFD Variable frequency drive

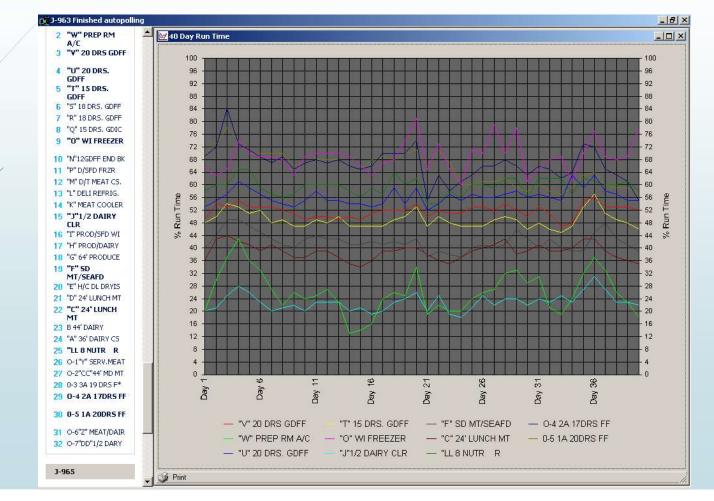
Results – Fixed SP with Variable Speed


FHP – Fixed head pressure FSP – Fixed setpoint VSP – Variable setpoint VFD – Variable frequency drive

Results – Variable SP & Speed


	Control	Options				
FHP	FSP	VSP	VFD	Savings	Payback	NPV
x	x			\$ 6,400	0.3	\$ 63,500
X		Х		\$ 8,400	0.6	\$ 80,300
x	x		x	\$ 9,100	4.4	\$ 52,900
x		х	x	\$ 21,600	2.1	\$175,300

- FHP Fixed head pressure
- FSP Fixed setpoint
- VSP Variable setpoint
- VFD Variable frequency drive



Variat 4 Castal and 5		Defrost Number							
Xprt-1 Settings for	Case / T1	/Fail Safe Min.	D10	20 - 404	DCC	DECO	00 - 400	10 - 100	co +0 +
Case Type	Temp.	/Termination °	R12	39 or 401	R22	R502	80 or 402	10 or 408	
3 Deck Meat Impact	28	Four / 35 / 48°	30	28	57				72
5 Deck Produce Impact	38/33	Four / 35 / 48°	35	33	66				82
Cheese Case Old Style	34/29	Three / 50 / 48°	32	30	60				76
Cheese Case Impact	34/29	Four / 30 / 48°	32	30	60				76
D/T Case	-5	Two / 60 / 52°			20	27	31	24	29
Dairy Case Old Style	36/31	Four / 50 / 48°	33	31	62				78
Dairy Case Impact	36/31	Four / 40 / 48°	33	31	62				78
Dairy WI	36	Two / 60 / 48°	33	31	62				78
Deli Refrigeration/Beer	37/32	Three / 50 / 48°	35	33	65				81
Deli WI Freezer	-5	Four / 35			20	27	31	24	29
Floral	40/35	Two / 60 / 48°	38	37	70				87
GDFF Old Style	-2	One / 75 / 52°			21	29	34	27	32
GDFF Impact	-2	One / 40 / 48°			21	29	34	27	32
GDIC Old Style	-7	One / 75 / 52°			19	25	29	23	27
GDIC Impact	-7	One / 40 / 48°			19	25	29	23	27
Juice/Beverage/Nutrition	36/31	Four / 40 / 48°	33	31	62				78
Lunch Meat Old Style	34/29	Four / 50 / 48°	32	30	60				76
Lunch Meat Impact	34/29	Three / 35 / 48°	32	30	60				76
Meat A/C	55	One / 120 / 70°	52	52	93				115
Meat WI	31	Two / 45 / 48°	29	27	56				71
Produce A/C	60	One / 120 / 70°	58	58	102				125
Produce Case Old Style	38/33	Two / 60 / 48°	35	33	66				82
Produce Island Impact	38/33	Four / 45 / 48°	35	33	66				82
Produce Green Impact	38/33	Four / 30 / 48°	35	33	66				82
Produce WI	37	One / 60 / 48°	34	32	65				81
Retarder	37	Two / 60 / 48 °	34	32	65				81
SD Meat (Fresh)	25	Three / 50 / 48°	24	22	49				62
SD Seafood	31/26	Three / 50 / 48°	29	27	56				71
SDFF	-5	Two / 60 / 52°			20	27	31	24	29
Service Meat R3 Impact	28	Four / 40 / 48°							
Service Meat	31	One / 110	29	27	56				71
Self Service 3 Dk Meat	28	Four / 30 / 48°	30	28	57				72
WI Freezer	-9	Two / 35			18	23	27	21	25
Temperature control low			to 4 minu	te cycle on (
Enable the thermostat		and onlange aning	R12	39 or 401	R22	R502		10 or 408	
Condensing Med Temp	70°	Cut-in / Cut-out	90/70	105/85	141/121	1.002	00 01 102	10 01 100	168/148
Condensing Low Temp	65°	Cut-in / Cut-out	85/65	100/80	131/111	145/125	170/150	145/125	156/136
Condensing Gas Defrost	80°	Cut-in / Cut-out	03/03	100/00	164/144	192/172	210/190	180/160	194/174
Shift for reclaim Center on	95°	Cut-in / Cut-out	120/100	140/120	190/170	210/190	240/220	210/190	230/210
Throttle or Range	20#	Cut-III/ Cut-Out	120/100	140/120	190/170	210/190	240/220	210/190	230/210
Defrost Termination	42°		39	40	72	84	95	81	89
Defrost Termination	42 48°		44	50	80	94	95 107	91	99
	48 52°		44	50 65	80	94	107	91	
Defrost Termination	52*		48	65	87	101	120	98	109
Rack Settings									
Suction Group Set Point			R12	39 or 401	R22	R502		10 or 408	
Dead Band 0.2	+22°/+16°			19 / 17	44 / 40		62 / 57	51 / 46	57 / 53
	-14°/-22°				12 / 10		21 / 18	16 / 13	20 / 17
A8 settings 10° Below condensing setpo			·	nt					
A9 settings	4#	Below A8 setting	,						
Hot water Reclaim	130°-126°	Altech / CPC	Temp	Alarms	10°	above	set point	for 90 min	
Hot water Gas	125°-120°	E1 / E2	Temp	Alarms	10°	above	set point	for 60 min	
9/21/2006									

Optimize Setpoints

Optimize Setpoints

Variable Air Volume at the Evaporator

Vary the fan speed in the cooler

Reduce speed and float suction up

Cycle fans with the temp control

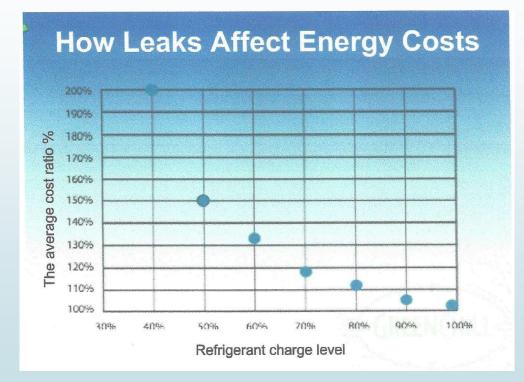
All or part of the fans to keep stratification from occurring

Savings from:

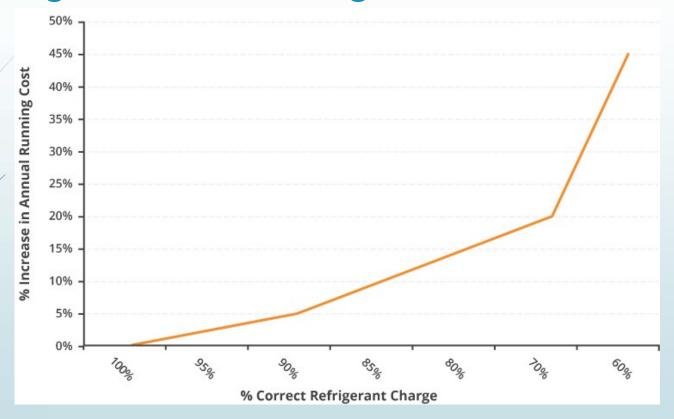
- Reduced fan energy
- Reduced cooling load

Variable Air Volume Study Case

50,000 Square foot freezer

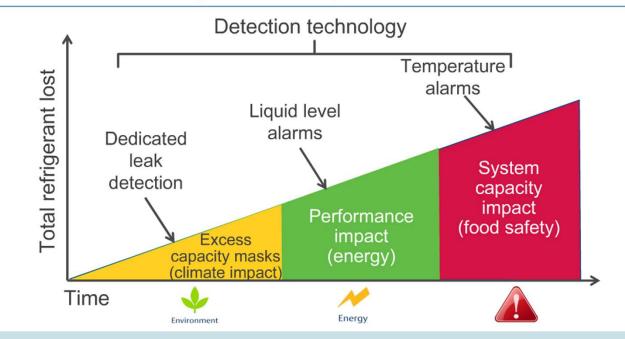

		C	esign	ign Part Load (5		50%)	
		Full Speed		Full Speed		70% Speed	
Air Flow Rate (CFM/Ton)			1,852		3,017		2,385
Fan Power (Watts/Ton)			359		652		281
	Fan	\$	0.040	\$	0.080	\$	0.031
Cost (\$/Ton-Hour)	Compressor	\$	0.167	\$	0.184	\$	0.163
	Total	\$	0.207	\$	0.264	\$	0.194
% Change from Desigr				28%		-7%	
% Change from Part Lo	oad, Full Spee	ed to	Variable	Speed -27%			-27%
	Fan				700,800	267,522	
Annual Energy (KWh)	Compressor			1,612,979		1,428,131	
	Total			2,3	313,779	1,	695,653
Annual Energy Cost (at \$.10/kWh)				\$ 2	231,378	\$	169,565
Annual Savings					\$	61,813	
Savings per Cu. Ft.						\$	0.04

Utility Presented \$39,000 incentive to Grocer


- Utility company presented grocer with a check for \$39,607 for saving close to 900,000 kilowatt hours per year by upgrading their refrigeration control and energy management systems at their cold storage distribution center.
- The refrigeration project, which included the cycling of evaporator fans, floating head pressure and floating suction controls to help reduce energy usage.

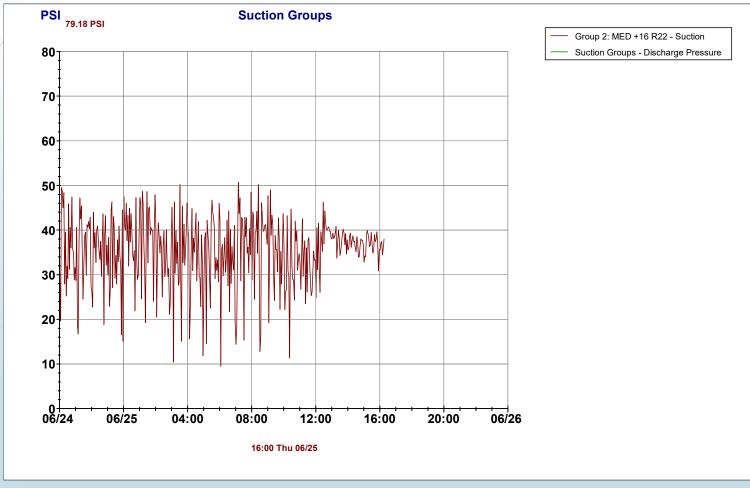
Refrigerant Level Charge

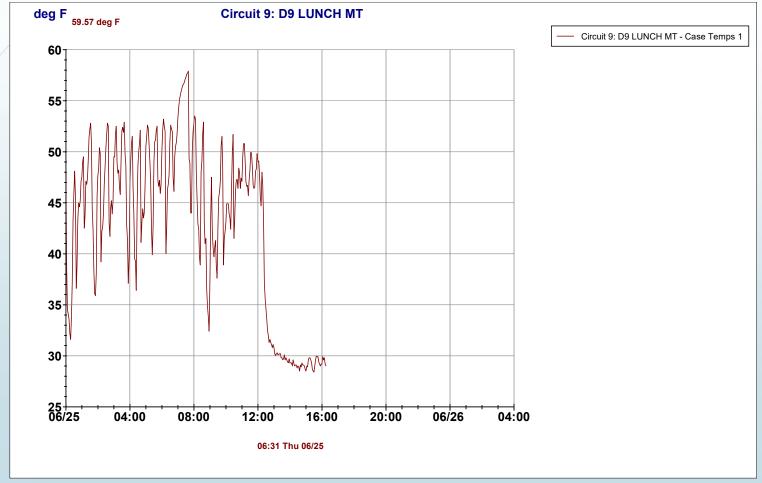
*Data from Impacts of Refrigerant Charge on Air Conditioner and Heat Pump Performance, Purdue University 2010

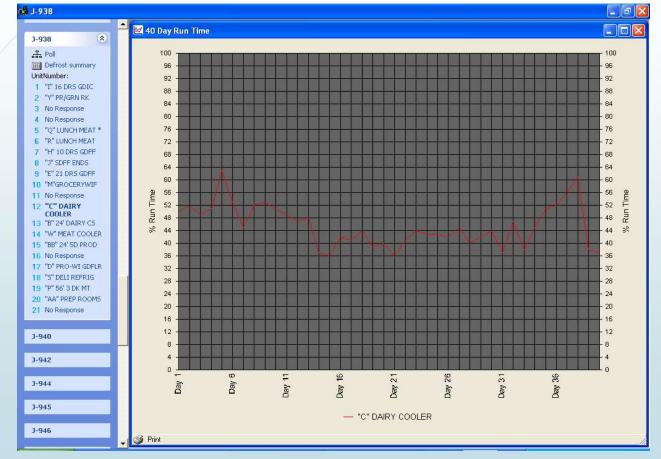

Refrigerant Level Charge – Runtime Penalty

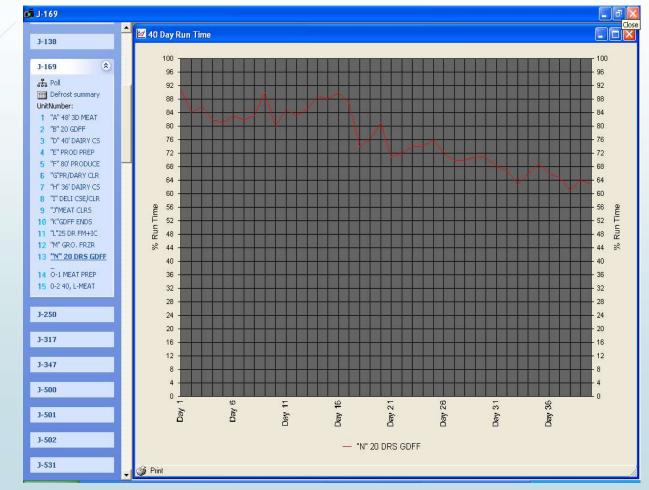
*Bostock, David. "Refrigerant Loss, System Efficiency and Reliability – A Global Perspective." Institute of Refrigeration Annual Conference 2013.

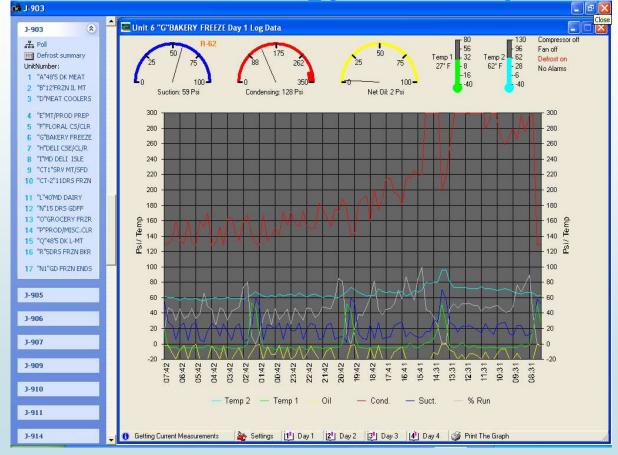
Refrigerant Level Charge

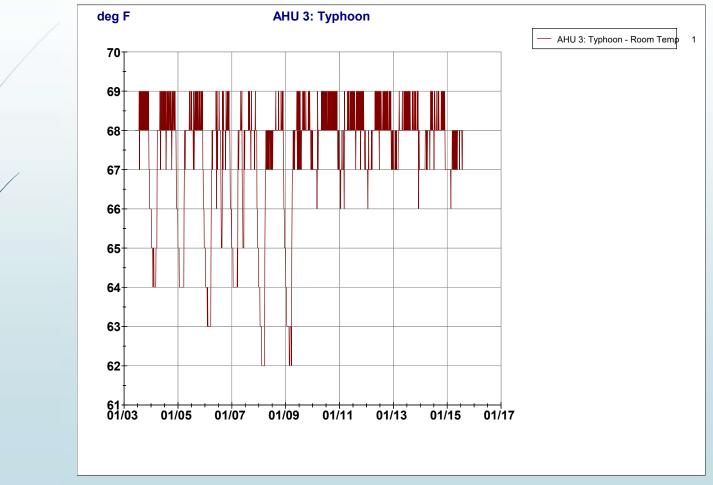

The Benefits of Detecting a Leak Early

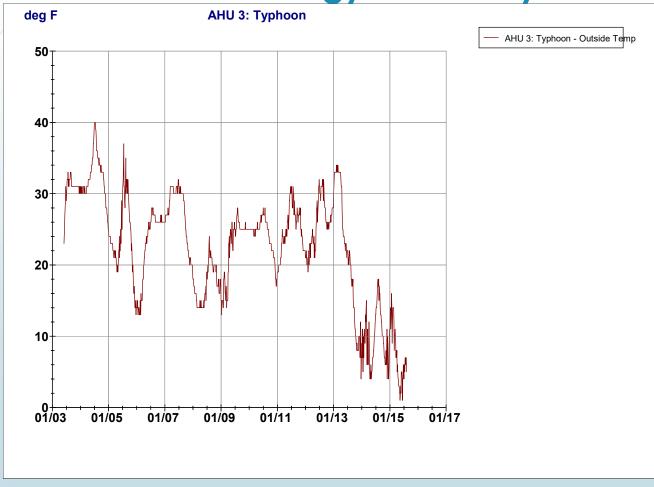

Refrigerant Level Charge

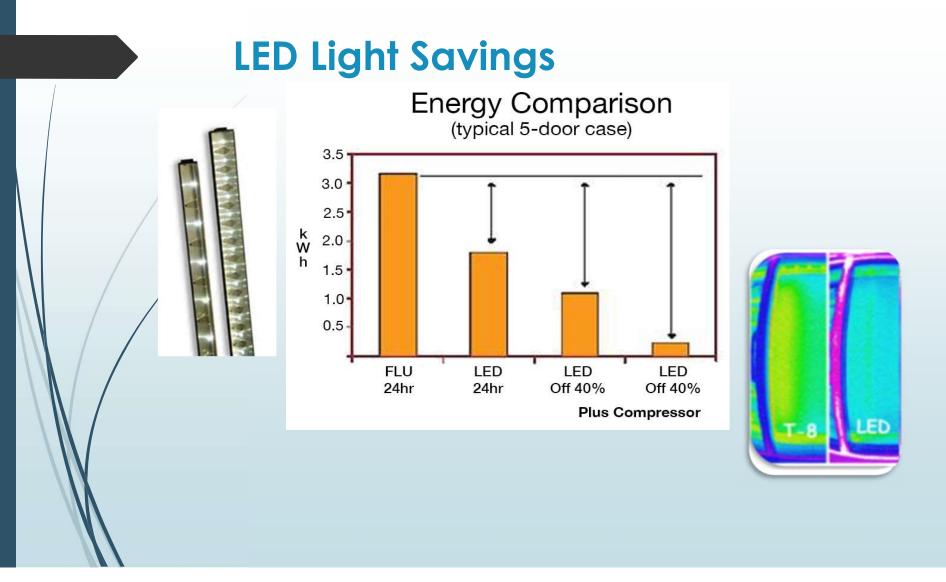

I) Cost to Replace	Leaked Re	frigerant	2) Sales/Profit				
I. Refrigerant type:	R-404A	click inside the yellow box and select the refrigerant from the drop-down menu	l . Item to be sold (milk, frozen peas, hotdogs, etc.)	milk	type the name of the product in the yellow space		
2. Amount of refrigerant leaked (in pounds):	100	type number of pounds in yellow box	2. Units (gallons, pounds, packs, ounces, etc.)	gallons	type the unit of the product in the yellow space		
3. Price per pound that you pay for refrigerant:	\$6.83	for \$7.00, type in 7.00	3. Sales price per unit	\$3.50	for \$3.50, type in 3.50		
			4. Profit margin per unit sold (in percent):	1.00	for 1%, type in 1: for 2.03%, type in 2.03		
Cost to replace leaked refrigerant:	\$ <u>683</u>		You have to sell	19,514	gallons of milk		
			to pay the replacement cost of	100	pounds of refrigerant		

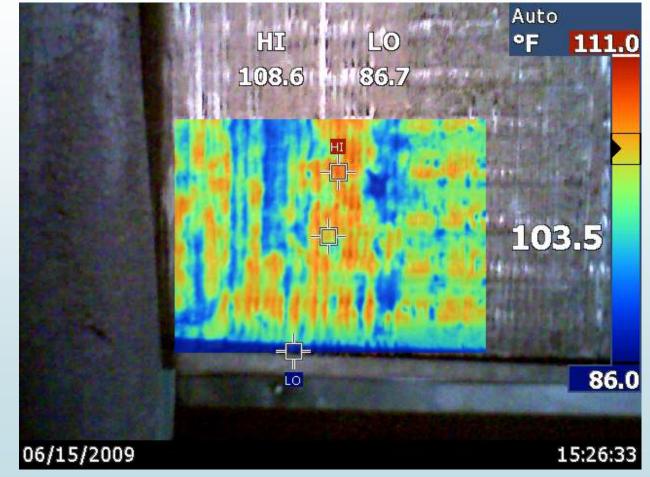

Refrigerant Level Charge - Suction

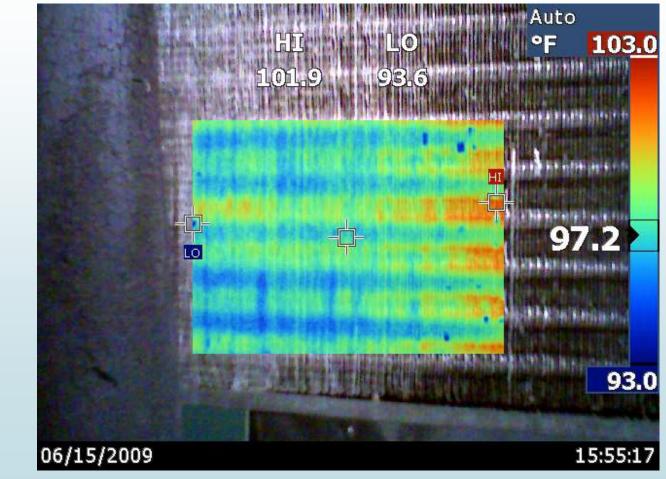



Refrigerant Level Charge - Temperature

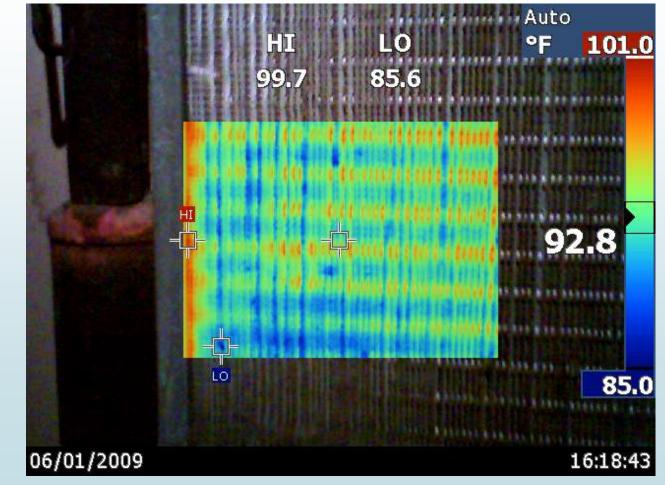








Effects of Lighting Reduction on HVAC


Coil Cleaning



Reduced electrical usage
Reduced service calls
Prolonged equipment life
Electric savings of 46 – 50%

*Source Cool Savings Project – FSTC and the City of San Francisco

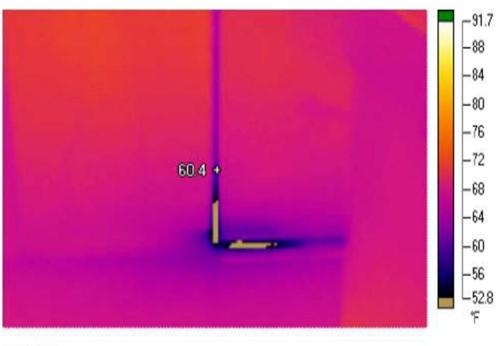


Image 12/17/2010 12:46:42 PM

Visible Light Reference

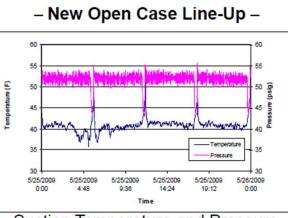
Economic Analysis for Reach-in Refrigerators

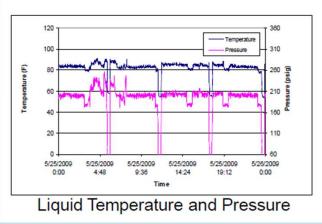
	Technology Option	Energy Savings kWh/Year	Energy Savings Percent	Simple Payback \$.1627/kWh
/	ECM Evap Fan Motor			
	(9W, 2 fan)	454	18%	0.6
	ECM Cond Fan Motor			
/	(20W)	359	14%	0.5
	High Efficiency			
	Compressor	171	7%	0.8
	ECM Compressor	288	12%	4.8
	Variable Speed			
	Compressor	331	13%	3.7
	High Efficiency Fan			
	Blade	171	7%	0.2

*U.S DoE, commercial refrigeration equipment research opportunities

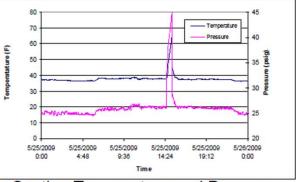
Anti-Sweat Heater Controls

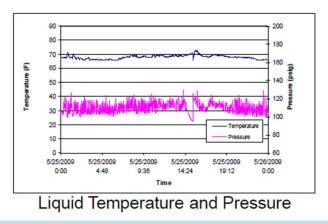
	Refrigeration Measures & Specifications	Incentive	Quantity	Extended Incentive
/	Anti-Sweat Heater Controls to Low temp case (below 0F,)	\$21	145′	\$3,045
	Anti-Sweat heater controls to Low temp case (below of,)	per linear foot of door width		
/	T8 to LED Lights, Side bar (single), Reach-In Cooler / Freezer	\$5	440'	\$2,200
	To to LED Lights, side bar (single), Reaction Cooler / Treezer	per linear foot of lamping	440	
	Motion Sensors on LED cases, Side bar (single), Reach-In Cooler / Freezer	\$1	440'	\$440
	wotion sensors on LED cases, side bar (single), Reach-in cooler / Freezer	per linear foot of lamping		
	Totals Saving over \$10,000 on the electric bill.	Total kWh Savings		\$5 <i>,</i> 685
	Based on .09 cents.	<mark>121,410</mark>		

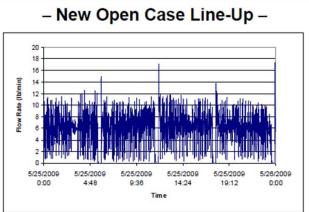

Add Doors to Open Dairy Case

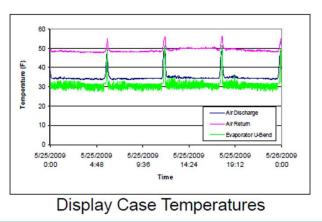


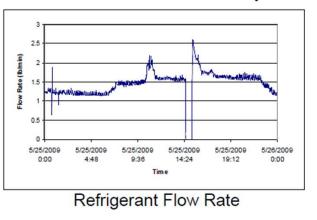
*University of Missouri, Kansas City

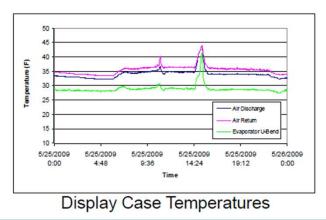

Energy Related Data


Suction Temperature and Pressure


- New Doored Case Line-Up -


Suction Temperature and Pressure


Energy Related Data



Refrigerant Flow Rate

- New Doored Case Line-Up -

Energy Related Data

Mean Electrical Energy Consumption of the Open and Doored Display Case Line-Ups Calculated using ARI/ANSI Standard 1200-2006.

Electrical Energy Consumption	Open Display Case Line-Up	Doored Display Case Line-Up
Compressors (kWh/day)	42.20	11.70
Lights (kWh/day)	5.18	11.93
Fans (kWh/day)	5.69	4.58
Anti-Sweat Heaters (kWh/day)		15.50
Total (kWh/day)	53.07	43.72
Total (kWh/day per ft)	2.21	1.71

2019 Columbus ASHRAE

Presenter Michael Frantz C.E.M. Lockheed Martin Field Engineer

 \Box

 \Box

Good

Average

Poor

Now That You Have a Hand on Energy Saving Ideas

Look No Further

Generation Some Extra Business While Helping Your Customer

How Can I Help?

Presenter Michael Frantz C.E.M. Lockheed Martin Field Engineer